* Step 1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(X1,mark(X2)) -> mark(2ndsneg(X1,X2))
            2ndsneg(mark(X1),X2) -> mark(2ndsneg(X1,X2))
            2ndsneg(ok(X1),ok(X2)) -> ok(2ndsneg(X1,X2))
            2ndspos(X1,mark(X2)) -> mark(2ndspos(X1,X2))
            2ndspos(mark(X1),X2) -> mark(2ndspos(X1,X2))
            2ndspos(ok(X1),ok(X2)) -> ok(2ndspos(X1,X2))
            cons(mark(X1),X2) -> mark(cons(X1,X2))
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            cons2(X1,mark(X2)) -> mark(cons2(X1,X2))
            cons2(ok(X1),ok(X2)) -> ok(cons2(X1,X2))
            from(mark(X)) -> mark(from(X))
            from(ok(X)) -> ok(from(X))
            negrecip(mark(X)) -> mark(negrecip(X))
            negrecip(ok(X)) -> ok(negrecip(X))
            pi(mark(X)) -> mark(pi(X))
            pi(ok(X)) -> ok(pi(X))
            plus(X1,mark(X2)) -> mark(plus(X1,X2))
            plus(mark(X1),X2) -> mark(plus(X1,X2))
            plus(ok(X1),ok(X2)) -> ok(plus(X1,X2))
            posrecip(mark(X)) -> mark(posrecip(X))
            posrecip(ok(X)) -> ok(posrecip(X))
            proper(0()) -> ok(0())
            proper(nil()) -> ok(nil())
            proper(rnil()) -> ok(rnil())
            rcons(X1,mark(X2)) -> mark(rcons(X1,X2))
            rcons(mark(X1),X2) -> mark(rcons(X1,X2))
            rcons(ok(X1),ok(X2)) -> ok(rcons(X1,X2))
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            square(mark(X)) -> mark(square(X))
            square(ok(X)) -> ok(square(X))
            times(X1,mark(X2)) -> mark(times(X1,X2))
            times(mark(X1),X2) -> mark(times(X1,X2))
            times(ok(X1),ok(X2)) -> ok(times(X1,X2))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {2ndsneg/2,2ndspos/2,cons/2,cons2/2,from/1,negrecip/1,pi/1,plus/2,posrecip/1,proper/1,rcons/2,s/1,square/1
            ,times/2,top/1} / {0/0,active/1,mark/1,nil/0,ok/1,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,cons,cons2,from,negrecip,pi,plus,posrecip
            ,proper,rcons,s,square,times,top} and constructors {0,active,mark,nil,ok,rnil}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 2.
        The enriched problem is compatible with follwoing automaton.
          0_0() -> 2
          0_1() -> 3
          2ndsneg_0(2,2) -> 1
          2ndsneg_1(2,2) -> 3
          2ndspos_0(2,2) -> 1
          2ndspos_1(2,2) -> 3
          active_0(2) -> 2
          active_1(2) -> 4
          active_2(3) -> 5
          cons_0(2,2) -> 1
          cons_1(2,2) -> 3
          cons2_0(2,2) -> 1
          cons2_1(2,2) -> 3
          from_0(2) -> 1
          from_1(2) -> 3
          mark_0(2) -> 2
          mark_1(3) -> 1
          mark_1(3) -> 3
          negrecip_0(2) -> 1
          negrecip_1(2) -> 3
          nil_0() -> 2
          nil_1() -> 3
          ok_0(2) -> 2
          ok_1(3) -> 1
          ok_1(3) -> 3
          ok_1(3) -> 4
          pi_0(2) -> 1
          pi_1(2) -> 3
          plus_0(2,2) -> 1
          plus_1(2,2) -> 3
          posrecip_0(2) -> 1
          posrecip_1(2) -> 3
          proper_0(2) -> 1
          proper_1(2) -> 4
          rcons_0(2,2) -> 1
          rcons_1(2,2) -> 3
          rnil_0() -> 2
          rnil_1() -> 3
          s_0(2) -> 1
          s_1(2) -> 3
          square_0(2) -> 1
          square_1(2) -> 3
          times_0(2,2) -> 1
          times_1(2,2) -> 3
          top_0(2) -> 1
          top_1(4) -> 1
          top_2(5) -> 1
* Step 2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            2ndsneg(X1,mark(X2)) -> mark(2ndsneg(X1,X2))
            2ndsneg(mark(X1),X2) -> mark(2ndsneg(X1,X2))
            2ndsneg(ok(X1),ok(X2)) -> ok(2ndsneg(X1,X2))
            2ndspos(X1,mark(X2)) -> mark(2ndspos(X1,X2))
            2ndspos(mark(X1),X2) -> mark(2ndspos(X1,X2))
            2ndspos(ok(X1),ok(X2)) -> ok(2ndspos(X1,X2))
            cons(mark(X1),X2) -> mark(cons(X1,X2))
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            cons2(X1,mark(X2)) -> mark(cons2(X1,X2))
            cons2(ok(X1),ok(X2)) -> ok(cons2(X1,X2))
            from(mark(X)) -> mark(from(X))
            from(ok(X)) -> ok(from(X))
            negrecip(mark(X)) -> mark(negrecip(X))
            negrecip(ok(X)) -> ok(negrecip(X))
            pi(mark(X)) -> mark(pi(X))
            pi(ok(X)) -> ok(pi(X))
            plus(X1,mark(X2)) -> mark(plus(X1,X2))
            plus(mark(X1),X2) -> mark(plus(X1,X2))
            plus(ok(X1),ok(X2)) -> ok(plus(X1,X2))
            posrecip(mark(X)) -> mark(posrecip(X))
            posrecip(ok(X)) -> ok(posrecip(X))
            proper(0()) -> ok(0())
            proper(nil()) -> ok(nil())
            proper(rnil()) -> ok(rnil())
            rcons(X1,mark(X2)) -> mark(rcons(X1,X2))
            rcons(mark(X1),X2) -> mark(rcons(X1,X2))
            rcons(ok(X1),ok(X2)) -> ok(rcons(X1,X2))
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            square(mark(X)) -> mark(square(X))
            square(ok(X)) -> ok(square(X))
            times(X1,mark(X2)) -> mark(times(X1,X2))
            times(mark(X1),X2) -> mark(times(X1,X2))
            times(ok(X1),ok(X2)) -> ok(times(X1,X2))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {2ndsneg/2,2ndspos/2,cons/2,cons2/2,from/1,negrecip/1,pi/1,plus/2,posrecip/1,proper/1,rcons/2,s/1,square/1
            ,times/2,top/1} / {0/0,active/1,mark/1,nil/0,ok/1,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,cons,cons2,from,negrecip,pi,plus,posrecip
            ,proper,rcons,s,square,times,top} and constructors {0,active,mark,nil,ok,rnil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))